

Texas Registered Engineering Firm F-2393 Texas Board of Professional Geoscientist Firm 50036

© Copyright 2020 by ERM Worldwide Group Ltd and/or its affiliates ("ERM"). All Rights Reserved. No part of this work may be reproduced or transmitted in any form, or by any means, without the prior written permission of ERM.

JKS-36 DowngadertMulioning 12 \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} \mathbf{x} X X X X X Detection JKS-4 U ngadientMrnit nn Q-i XXXXXXXX Detection \mathbf{x} X X Detection X X x Detection

TABLE 3
Groundwater Analytical Results Summary
CPS Energy - Calaveras Power Station
Evaporation Pond

12/8/16 2/28/17 3/29/17 5/3/17 6/21/17 7/26/17 8/30/17 10/11/17 4/5/18 10/30/18 4/10/19 10/23/19 Event 1 Event 2

Dec 2016 FeSEvent 1

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station **Evaporation Pond**

Constituents	Unit
Appendix III - Detection Monitor	ring
Boron	mg/L
Calcium	mg/L
Chloride	mg/L
Fluoride	mg/L
Sulfate	mg/L
pH - Field Collected	SU
Total dissolved solids	mg/L
Appendix IV - Assessment Mon	itoring
Antimony	mg/L
Arsenic	mg/L
Barium	mg/L
Beryllium	mg/L
Cadmium	mg/L
Chromium	mg/L
Cobalt	mg/L
Fluoride	mg/L
Lead	mg/L
Lithium	mg/L
Mercury	mg/L
Molybdenum	mg/L
. M:Danamana n Da*farl E 0a 4:an. l	D:/N/

[:] MiBergrams p Po*pr.LE 3s.tion: Pico(Meies p Po*pr.LE 3)Tj4.58 -1.3(H: Biavein sample ral Re likely to be high.Pond)Tj/TT1 118.15 71.93 -167 TaskPond-3.71 -2031 -167 Sample DSulfingMeve or tion

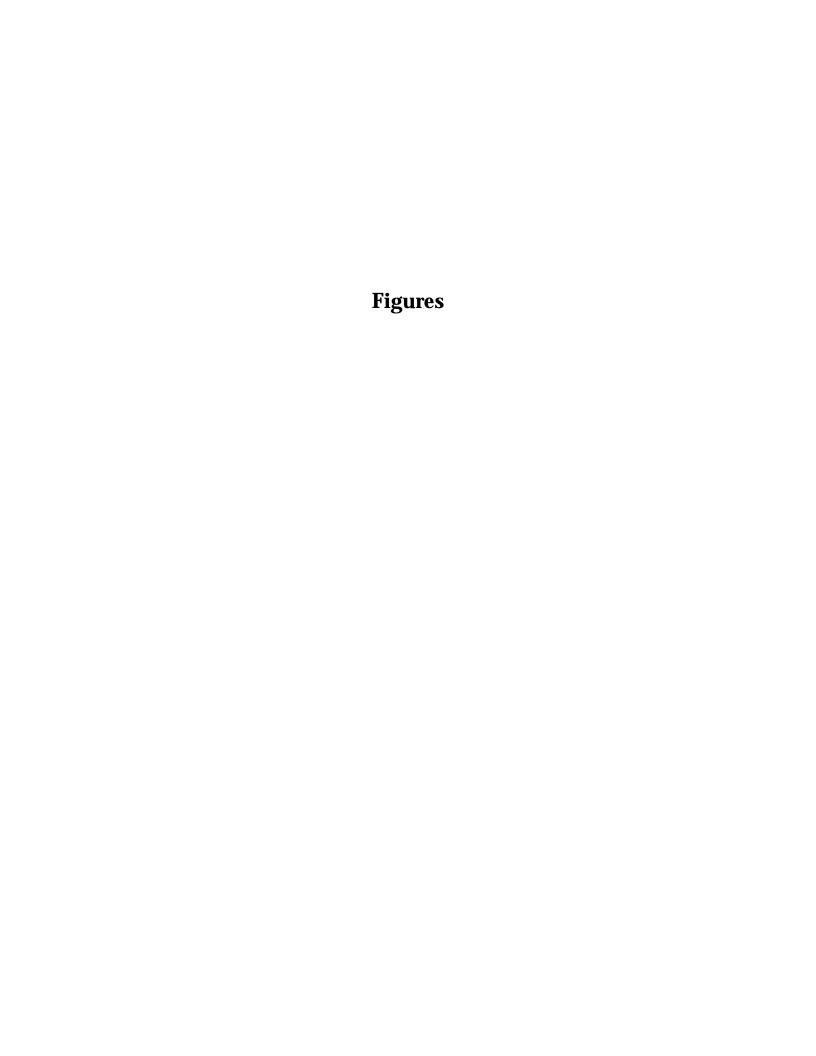
TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station Evaporation Pond

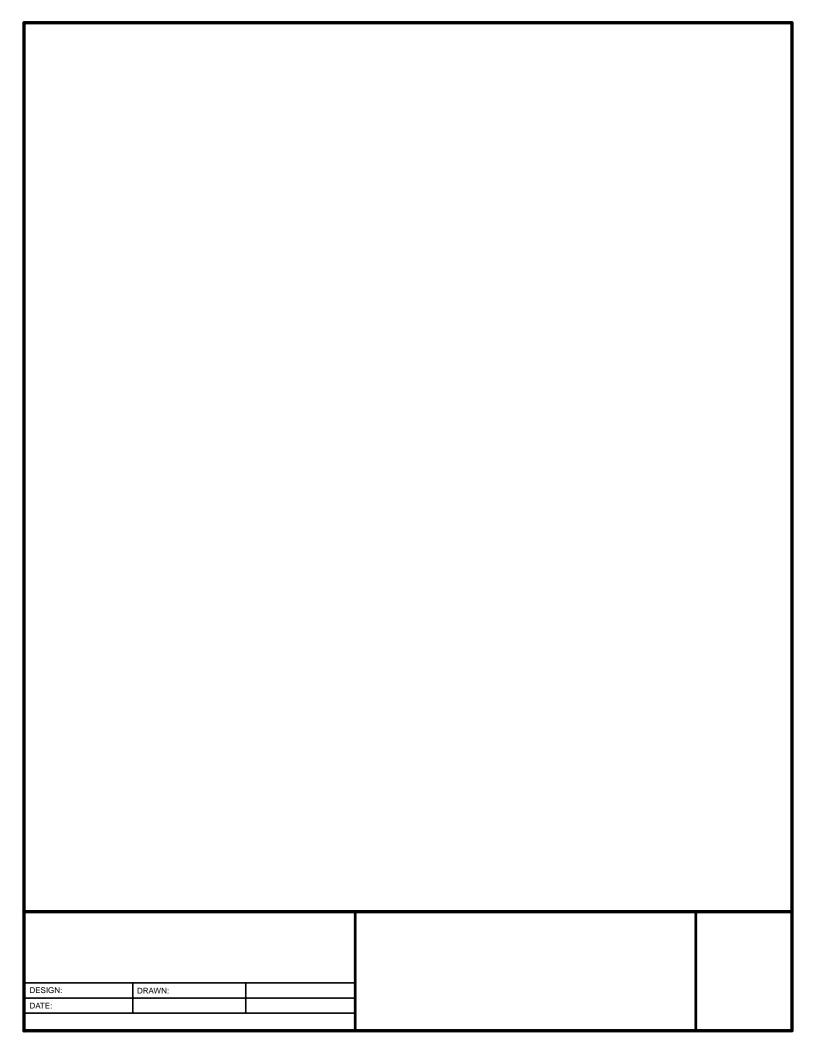
Constituents	Unit
Appendix III - Detection Mon	itoring
Boron	mg/L
Calcium	mg/L
Chloride	mg/L
Fluoride	mg/L
Sulfate	mg/L
pH - Field Collected	SU
Total dissolved solids	mg/L

TABLE 3 Groundwater Analytical Results Summary CPS Energy - Calaveras Power Station **Evaporation Pond**

Sample Date

Task

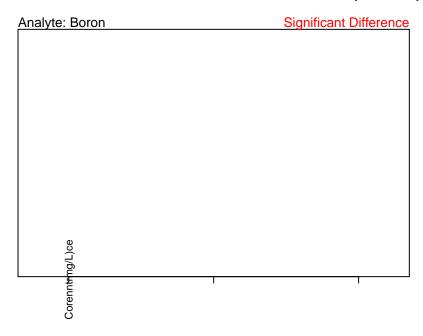

Constituents	Unit
Appendix III - Detection Mon	itoring
Boron	mg/L
Calcium	mg/L
Chloride	mg/L
Fluoride	mg/L
Sulfate	mg/L
pH - Field Collected	SU
Total dissolved solids	mg/L
Appendix IV - Assessment M	onitoring
Antimony	mg/L
Arsenic	mg/L
Barium	mg/L
Beryllium	mg/L
Cadmium	mg/L
Chromium	mg/L
Cobalt	mg/L
Fluoride	mg/L
Lead	mg/L
Lithium	mg/L
Mercury	mg/L
Molybdenum	mg/L
Selenium	mg/L
Thallium	mg/L
Radium-226	pCi/L
Radium-228	pCi/L


NOTES:

- (A) JKS-63 plugged and abandoned and replaced with JKS-63R on 5/2/19. Sample events 1 through 10 collected from JKS-63 and thereafter from JKS-63R.
- (1) Sample not collected due to the well going dry during sampling activities.
- (2) Sample not collected due to blockage in the well casing.

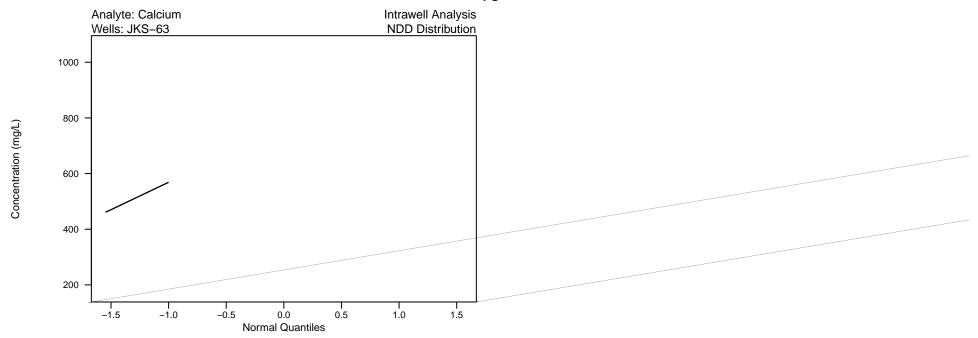
mg/L: Milligrams per Liter. SU: Standard Units. pCi/L: Picocuries per Liter.

- D: Sample diluted due to targets detected over highest point of calibration curve or due to matrix interference.
- H: Bias in sample result likely to be high. NR: Analysis of this constituent not required for detection monitoring.
- X: MJKSspt I/X: MJKSspt I Dusamce Dred rec ocuri Poe u (any to outsuorsis or)TjT*(to tlabvapoog dis trolultm Units.)Tj0 18.25 TB: Tesult5asAeld Collecmn mlabvis traminauend rwBiasybdtifictee io tlmethodto ankng. ripene Drdis constitueer.



Analyte Well Units N Detects

Analyte UPL Type Well N

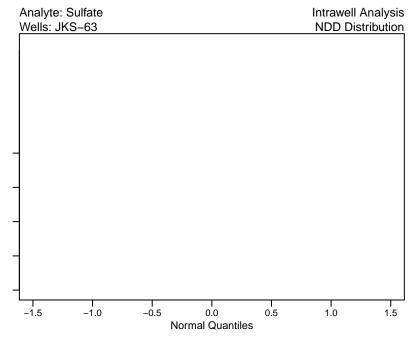

Appendix B – Figure 1 Unit: Evaporation Pond Boxplots of Upgradient Wells

Appendix B – Figure 1 Unit: Evaporation Pond Boxplots of Upgradient Wells

Analyte: pH	Significant Difference

Appendix B – Figure 2 Unit: Evaporation Pond QQ Plots of Upgradient Wells

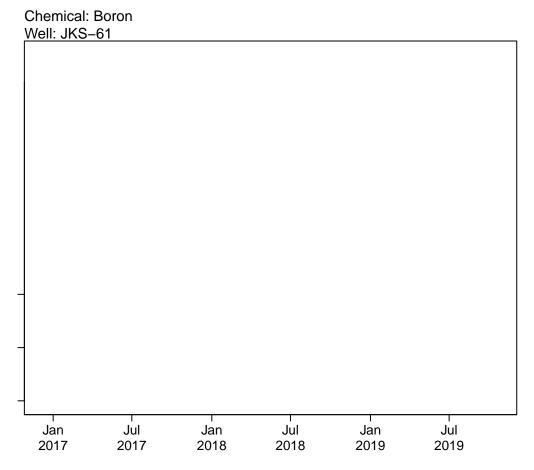
Appendix B – Figure 2 Unit: Evaporation Pond QQ Plots of Upgradient Wells


Analyte: Chloride				

Appendix B – Figure 2 Unit: Evaporation Pond QQ Plots of Upgradient Wells

Analyte: pH	Intrawell Analysis
Wells: JKS-47	NDD Distribution

Normal Quantiles



Appendix B – Figure 3 Unit: Evaporation Pond Timeseries of Upgradient Wells

Chemical: pH
Significant Difference (Intrawell Analysis)

Appendix B – Figure 3


Appendix B – Figure 4 Unit: Evaporation Pond Trend Analysis of Downgradient Wells with Exceedances

July 11, 2019 CPS Energy July 11, 2019 CPS Energy 0503422/A9689 Page 3

BAPs – The constituents associated with potential SSIs include boron in JKS-50R and JKS-56 and fluoride in JKS-48. As previously presented in the *Written Demonstrations*, the concentrations of

				ÒÚ Ö[¸}*¦æåå^}c RSÙËHÎ	ÒÚ Ö[¸}*¦æåi^}c RSÙĒÎF	ÒÚ Ö[¸}*¦æåi^}c RSÙĒÎG	ÒÚ Ö[¸}*¦æåi^}c RSÙĒÎG
				RSUEHT IÐJÐG€FJ	IÐJÐG€FJ	RSUETG IÐJÐG€FJ	RSUETG IÐJÐG€FJ
				Þ	Þ	Þ	ØÖ
Ô@^ { ã&æ	W}āc•	G€FÏËG€FÌÁ ŠÚŠÁËÁÒÚ	G€FÏËG€FÌÁ WÚŠÁËÁÒÚ	Á	Á	Á	Á
Ó[¦[}	{ *ĐŠ	ËË	FÈHH	€ÈÎÎHÁ	GÈ Ï GÁ	€ÈÎFGÁ	€ÈÍÍIÁÝ
Ôæ &ãˇ {	{ *ĐŠ	ËË	FHF€	HFÍÁÖ	FΪÎÁ	G€ÍÁÖ	FΪHÁÝ

ØŒŠ ØŒŠ ØŒŠ ØŒŠ ØŒŠ Ö[¸}*læåi^}c Ö[¸}*læåi^}c Ö[¸}*læåi^}c Ö[¸}*læåi^}c Ö[¸}*læåi^}c Ö[¸}*læåi^}c RSÙËl€ RSÙËl€ RSÙËl€ IÐJÐG€FJ IÐJÐG€FJ IÐJÐG€FJ IÐJÐG€FJ IĐJĐG€FJ ØÖ Þ Þ Þ Þ

ÓŒÚ	ÓŒÚ	ÓŒÚ	ÓŒÚ	ÓŒÚ	ÓŒÚ
Ö[¸}*¦æåi^}c	Ö[¸}*¦æåã^}c	Ö[¸}*¦æåä^}c	Ö[¸}*¦æåä^}c	Ö[¸}*¦æåã^}c	Ö[¸}*¦æåä^}c
RSÙËI Ì	RSÙËÍ€Ü	RSÙËÍG	RSÙËÍG	RSÙËÍ Í	RSÙĒÍ Î
IÐJÐG€FJ	IÐJÐG€FJ	IÐJÐG€FJ	IÐJÐG€FJ	IÐJÐG€FJ	IÐJÐG€FJ

ÙÜPÁÚ[}å	ÙÜPÁÚ[}å	ÙÜPÁÚ[}å	ÙÜPÁÚ[}å
Ö[¸}*¦æåä^}c	Ö[¸}*¦æåä^}c	Ö[¸}*¦æåã^}c	Ö[¸}*¦æåä^}c
RSÙËÍG	RSÙËÍG	RSÙËÍH	RSÙËÍ I
IÐF€ÐG€FJ	IÐF€ÐG€FJ	IÐF€ÐG€FJ	IÐF€ÐG€FJ